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Korobov theory for multidimensional numerical integration is used to evaluate electronic inte- 
grals. This paper shows the important role played by periodization techniques. Singularity (r~-z ~) in 
the bielectronic six-dimensional integrals is removed through a twofold three-dimensional integra- 
tion. Results are presented for atomic integrals involving Slater type atomic orbitals. 
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1. Introduction 

In a recent paper from this laboratory, numerical integration techniques were 
used to evaluate matrix elements of the Hamiltonian between localized molec- 
ular orbitals [1]. For bielectronic integrals a six-dimensional Korobov  integration 
grid was used, without an explicit removal of the singularity r121 in the intcgrand. 
Although the results were satisfactory, a full advantage of Korobov  theory was 
not taken. Recently, Handy  and Boys [2] have studied the effect of periodization 
for some one-dimensional integrals ("periodization" in our sense is identical to 
"reduction of boundary conditions" in the paper of Handy and Boys). After a 
brief account of some general theoretical results dealing with the convergence of 
numerical integration for some classes of functions, we investigate the efficiency 
of periodization techniques for integrals used in quantum chemical calculations 
(with the difficult problem of r;~ singularity), and we give some practical results 
for atomic integrals involving Slater type orbitals: 

2. Role of Periodization in Multidimensional Integration Methods 

For  a one-dimensional function with a derivative of order 2k + 1, there is 
a well-known theorem: 

"Let 9(x)  ~ C ~zk+l) [a, hi, o'(a) = g'(b), 9"(a)  = 9"'(b), 9 ~2k- 1) (a) = 9 Czk- 1) (b) and 
let ]g ~2k+1) (x)l < M for a -< x < b. 

If T, designates the trapezoidal sum, that is, if: 

T.(g) = h [g(a) /2  + g(a + h) + . . .  + g(a + (n - 1) h) + g (b ) /2] ,  h = (b - a ) / n ,  
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then ]j'~g(x) d x -  T,(g)l < C/n 2k+t. The constant C is independent of n and may 
be taken as: C = M ( b  - a)2k+22-2k:r -2k-1 ((2k + i) where ((k) = EF= 1 j -k  is the 
Riemann zeta function" ([3], p. 55). 

Various modern multidimensional integration methods I-4-7] can be con- 
sidered as a generalization of this theorem to multidimensional functions1. Let 
us introduce the class/3~ of functions f ( x ~ ,  . . . ,  x , )  such that: 

- the partial derivatives O k f / O x ~ . . .  OXk," (0 <_ k <_ an, 0 < k,, < c~n, r = 1 . . . . .  n) 
are continuous and bounded in the whole space. 

- f and the preceding partial derivatives have the same unit period. 
Bakhvalov theorem [8] proves that for f e / ) ~ ,  the best integration grid is the 

uniform one (uniform subdivision of the n-hypercube) which provides an error 
(9(1/N~). For functions with a less pronounced periodic character, the uniform 
grid is far from being a good rule. Korobov [4] has demonstrated that it is 
nevertheless possible to find good integration rules for classes larger than/),~. 
Let us introduce H~(C), class of functions f ( x l ,  . . . ,  x , )  such that the partial deriv- 
atives o k f / 8 x ~  ~... ~ k CX," (0--< k < c~n, 0 =< k~ < c~, r = 1, ..., n) are continuous and 
bounded by C. /t~(C) is the subset of H2(C ) of functions g for which 9 and its 
partial derivatives are periodic with a unit period. For 9 s H2(C), Korobov has 
determined integration grids for which the error is (9(Log~"N/N~).  Moreover he 
has shown that for every function f ~  H2(C), it is always possible to find g e/tff(C') 
(/3 < cr such that .f~ dXl Ilo dx2  ... ~1 o d x ,  f ( x t ,  y2,  ... , Xn) = IlO dXl I~o dx2 ... ~o d x ,  
9 (x t ,  x2 . . . . .  x,). Finding 9 from f is what we call "periodization of f" .  

3. P e r i o d i z a t i o n  T e c h n i q u e s  

The key lemma proved by Korobov [4] is: 
If g(x l ,  x2 . . . .  , x , )  ~ H~(C),  ~ > 2, and if [Okg/cgX~]xr:o = [Okg/tVX~]:~r=l 

( r= 1, . . . ,n, k = 0 ,  1 , . . . , f l -2 ,  2<//=<:0, then g({xl}, {x2},..., {x,}) (where {x} 
means fractional part of x) belongs to/4~(C'). Therefore starting from f belonging 
to H,~(C), the periodization is the determination of g satisfying to the conditions 
of the preceding lemma and giving the same integral as f over the unit hypercube. 

A simple periodization corresponds to fl = 2, and means that g must take the 
same value at the frontier of the unit n-hypercube. This can be done with a simple 
change of variables: 

g(x , ,  x2 . . . .  , xn) = f ( ~ ( x l ) ,  ~b(x2) . . . . .  ~(x~)) ~'(xl) ~'(x2) . . . .  ,4)'(xn) (1) 

with q~(x) = sin 2 (rex/2). 
A complete periodization of order f i -  2 can be achieved in different ways. 

The simplest one uses the formula (1) with: 

x 
O(x)  ( 2 j -  s'-~ = 1 ) C 2 j _ 2 ~ ( t ( 1 - t ) ) S - t d t ,  j = f i - - 2 .  

0 

The same procedure is used by Handy and Boys [2]. Such a periodization is 
not very expensive (in computing time) and this paper will mainly illustrate its 

I For a short presentation of Korobov Theory, see Stroud, A.H.: Approximate calculation of 
multiple integrals. Englewood Cliffs, New Jersey: Prentice Hall 1972. In Ref, [10], Zaremba gives a 
slightly different presentation of Korobov theory. 
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effects (K periodization). It has a serious drawback: nothing warrants that g 
belongs to a c lass /~(C')  with C' < C. If C' > C, the precision of the numerical 
integration can be significantly lowered. 

This difficulty can be in principle overcome with another periodization 
process. This periodization technique has been proposed by Korobov [4] and 
illustrated by Zaremba [9, 10] and Maisonneuve [1 1] (Z periodization). 

Let , - 2 1 

g~(x 1 . . . .  , x . ) = g ~ _ l ( x  I . . . . .  x . ) +  ~ ~ Pkr,~r(X~)(~kg~_l/aX~")~_~. (2) 
k ~ = O  ~ , . = 0  

with go(X 1 . . . . .  x , )  = f ( x l  . . . .  , x , )  where P,,,~(x) = ( - 1)~Bm+ l ( x ) / (m  + 1), B,,(x)  being 
Bernouilli polynomials, g,(x~ . . . . .  x , )  provides a complete periodization of order 
/~-  2 but involves some partial derivatives o f f  at the frontier of the unit n-hyper- 
cube and this transformation is time consuming. Its effectiveness will be examined 
on a simple case. 

4. Removal of Singularity for Bielectronic Integrals 

The general type of bielectronic integrals arising in quantum chemical cal- 
culations is: 

I = (ablr~2 ~ Icd) = S ~p~(1) %(1) r~d ~0c(2 ) cpd(2 ) dv I dv 2 = j" f(1) r~-z ~ g(2) dv 1 dv 2 

where q~, ~0 b, ~o C, q~e are molecular or atomic orbitals. In our previous work [1], 
we have calculated molecular bielectronic integrals of that type by a direct  s ix-  
dimensional  integration. We merely eliminated some "dangerous points" with a 
very crude procedure [12]. Many authors (Ellis [13], Boys and Handy [14], 
Goodisman and Secrest [15]) have pointed out the importance of the r121 sin- 
gularity for the convergence of the numerical integration. There are a lot of 
transformations which suppress the singularity, but we may keep in mind that 
(a) the sampling points must be as much as possible concentrated in the region 
where the integrand takes its significant values, (b) after the removal of the sin- 
gularity, the modified integrand is only a continuous function and nothing can 
be said for the successive derivatives. We shall see in the next section that it seems 
difficult to fulfil the conditions imposed in Korobov theory for integrals used in 
quantum chemistry calculations. However, and fortunately, the  following 
"numerical experiments" prove that precision can be improved by a judicious 
elimination of singularity and periodization techniques. 

The removal of r121 singularity is simplified by a first decomposition of six- 
dimensional integration into two successive three-dimensional integrations: 

I = I f ( l )  V(I)dr1, where V(1) = S g(2) r(21 d v 2. We have tried different methods 
for the numerical integration of V. In the first one we used for electron 2 polar 
coordinates centered on electron 1. But it was impossible with this transformation 
to determine sampling points adapted to the distribution of electron 2 (see con- 
vergence in the first column of Table 1). In a second method we used the Neumann 
expansion of r(~. V(1) is then expressed as: 

r l  oo 

V(1) = y g(2) N(r2 / r l )dV  2 -~ ~ g(2) N(r l / r2 )dv2  , 
0 r l  
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Table 1. Comparison between different ways for removing the singularity in the potential integral 
for a monocentric ls ls Slater type distribution [-r 1.265, distance = 1.55 a.u., exact value 
= 0.752250 a.u.]. Absolute errors appear in the table. Numerical integration is performed using simple 

periodization. N is the number of points of the integration grid 

N Method 1 
Polar coordinates 

Method 2 Method 3 
Neuman expansion Prolate spheroidal 

coordinates 

10l -0.01040 0.00656 0.00224 
199 +0.00905 0.00061 0.00021 
307 -0.00246 0.00643 0.00017 
523 0.00183 0.00901 0.00004 

where N(x)  is a limited Neuman expansion. The results were not encouraging 
(second column of Table 1) and periodization had no noticeable effect on con- 
vergence. Moreover it appears from a work of Schaefer [16] that it is necessary 
to use a large expansion to obtain sufficient accuracy and this is a serious drawback. 
The third way we tried and kept for subsequent calculations was to introduce 
a prolate spheroidal coordinate system with one of the foci on the electron 1 and 
the other on a "central" point of the distribution of electron 2. This transformation 
deletes the singularity and concentrates the sampling points in a well adapted 
region. The results obtained (last column of Table 1) are much better than those 
obtained with others methods. However the partial derivatives of the trans- 
formed integrand g(~, r/, q)) are continuous but no longer bounded at the frontier 
of the unit hypercube. (For instance, special form of 9 excepted, ~ 9 / ~  ~ 0% ~ ~ 1.) 
Therefore, we cannot apply Z periodization to an arbitrary 9. K periodization 
can be used but nothing warrants its efficiency in each case. 

5. Effect of  K Periodization 

We have studied the effect of K periodization for different types of integrals 
used in a quantum chemical calculation of energy. 

5.1. Overlap Integrals 

s = I z~(1) Zb(1)dvl. 

If a = b, polar coordinates r, 0, q~ centered on the nucleus are transformed as 
t = 1/(r + 1), u = 0/n and w = rp/2~r in order to map the integration domain over 
the unit hypercube. 

If a = b, prolate spheroidal coordinates ~, t/, ~0 along the line ab are trans- 
formed as t = l / l ,  u = (q + 1)/2, w = qff2rc. 

In both cases, the integrand is completely periodic with respect to w and we 
have only to perform the periodization for t and u. In Table 2, we have displayed 
complete results for a monocentric overlap integral and for a bicentric one. We 
can make the following comments, valid for all types of integrals: 

There is an optimal degree of periodization, different for t and u. As we have 
mentionned before (Part 2) starting from f~H~(C), K periodization gives 9~/~(C') .  
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Table 2. Absolute errors (in units 10-5 a.u.) for overlap integrals, corresponding to different degrees 
of K periodization. The upper tables correspond to the monocentric overlap between ls and 2s Slater 
type orbitals [{ (ls) = 7.663, ~(2s) = 2.250, exact value = 0.231145112]. The lower tables correspond 
to the bicentric overlap between ls and 2p Slater type orbitals [{(ls)= 1.268, {(2p)= 2.214, exact 
value = 0.39408778]. N is the number of points used in the integration formula, cq, % are the degrees 

of K periodization 

N = 101 

1 206 139 
2 22 13 
3 7 4 
4 20 12 
5 87 51 
6 245 145 

1 74 
2 131 
3 50 
4 98 
5 156 
6 191 

x 

3 4 5 6 a ~  1 2 3 4 5 6 

N = 199 

53 15 68 113 1 0.9 8 9 8 4 0.4 
2 5 11 16 2 0.2 0.07 0.08 0.06 0.008 0.05 
0.6 2 4 5 3 0.2 0.0027 0 . 0 0 2  0 . 0 0 2  0 .0039 0.006 
1.6 6 11 16 4 0.2 0.0001 O.O001 0.0003 0.0007 0.0011 
7 26 50 68 5 0.2 00001 0.0001 0.0012 0.0058 0.0064 

20 73 142 193 6 0.2 0.0004 0.0014 0.02 0.04 0.04 

500 706 817 853 926 1 45 138 239 276 265 235 
221 261 286 302 312 2 52 10 8 1t 10 9 
41 57 62 63 63 3 43 16 0.37 0.49 0.13 0.41 
34 29 101 119 132 4 38 17 0.23 0.19 0.22 0.20 
55 15 03 142 190 5 33 18 0.17 0.12 0.16 0.08 

14l 29 102 225 333 6 28 18 0.18 0.I2 0.21 0.20 

Table 3. Absolute errors (in units 10- s a.u.) for kinetic integrals with respect to different degrees of K 
periodization and different interpolation formulas. The left table was obtained for a (1 s, I s) monocentric 
kinetic integral [~(ls)= 1.268, exact value = 0.004964850] and the right table was obtained for a 
(ls, 2s) kinetic integral [~(ls)= 7.663, ~(2s)= 2.250, exact value = -0.933751880]. On the first line is 
the result obtained by numerical integration with the exact analytical derivatives, on the three fol- 
lowing lines (F1, Fz, F3) are the results obtained with interpolation formulas (see 5.2). e indicates the 

periodization degree in the special case e = et = % 

N=199 e = l  e = 2  c~=3 cr N=199 c~=l e = 2  c~=3 c~=4 

A 2.38 -5.61 0.01 0.02 A -82.71 0 . 0 0 0 8  0 .00026 0.00012 
F 1 2.20 -5.79 0.19 0.15 F1 - 3.49 79.18 79.18 79.17 
F 2 2.38 - 5.61 0.0t 0.02 F 2 - 82.72 0 . 0 0 0 6  0 ,00024 0.00015 
F 3 2.38 -5 .6l  0.01 0.02 F 3 -82.72 0 . 0 0 0 7  0 .00022 0.00013 

W i t h  a smal l  n u m b e r  of  p o i n t s  in t he  i n t e g r a t i o n  f o r m u l a  (our  case), the  i n c r ea s e  

of  C m a y  a n n i h i l a t e  t he  i n c r e a s e  of  c o n v e r g e n c e  p r o d u c e d  by  p e r i o d i z a t i o n .  

T h e  o p t i m a l  d e g r e e s  of  p e r i o d i z a t i o n  are  l i n k ed  to  the  t y p e  of  i n t e g r a n d ,  i.e. 

t he  t y p e  of  d i s t r i b u t i o n  invo lved .  T h e  l e ad ing  f ac to r  s eems  to  be  the  m o n o c e n t r i c  
o r  b i c e n t r i c  c h a r a c t e r .  

5.2. Kinetic Integrals 

W = - ~ za( l )  V2/2 Zb(1)dvl. 

In  th is  case  an  a d d i t i o n a l  d i f f icul ty  is t he  n u m e r i c a l  c a l c u l a t i o n  of  t he  der iv -  

at ives.  It is c o n v e n i e n t  to  r e w r i t e  T =  1/2S VZa(1)V)~b(1)dv 1, w h e r e  V)~ is t h e  

g r a d i e n t  of)~. T o  t es t  t h e  p r e c i s i o n  o f  n u m e r i c a l  d i f f e r en t i a t i on ,  we  h a v e  c o m p a r e d  
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Table 4. Absolute errors (in units 10-5 a.u.) for potential integrals corresponding to different degrees 
of K periodization. The upper tables correspond to the potential created by a monocentric distribu- 
tion (1 s, 2s) [4 (ls) = 7.663, ~ (2s) = 2.250, d = 1.0 a.u., exact value = 0.230070522 a. a. I. The lower tables 
correspond to the potential created by a bicentric distribution (is, 2s) ]-~(ls)= 1.268, ~(2s)= 2.250, 
distance from ls center = 1.65 a.u., distance from 2s center = 2 a.u., exact value = 0.26522010 a.u.]. 

N is the number of points in the integration formula, er c~, are the degrees of K periodization 

l 2 3 4 5 6 ~ t  1 2 3 4 5 6 

N =  101 N =  199 

198 575 811 971 1095 1199 l 273 I47 264 327 352 355 
t27 206 381 500 588 655 2 182 8 7 1t 15 19 
378 46 86 100 t03 100 3 t53 7 0.9 0.8 ! 1 
600 47 60 140 201 . 245 4 131 8 0.3 0.1 0.1 0.1 
671 213 139 45 45 126 5 101 9 0.1 0.07 0.02 0.01 
616 322 321 239 134 28 6 71 10 0.03 0.06 0.01 0.006 

238 555 866 1085 1264 1412 1 62 128 225 291 330 353 
112 102 53 83 67 17 2 38 28 26 41 62 85 
104 174 65 22 52 36 3 46 23 3 9 17 22 
126 226 157 81 52 59 4 76 30 6 21 37 59 
123 317 339 320 325 347 5 97 31 23 62 106 155 
127 456 587 642 694 745 6 104 20 48 110 I79 251 

the  resul ts  of  d i f ferent  i n t e r p o l a t i o n  f o r m u l a s  wi th  tha t  of  the  ana ly t i ca l  fo rmula .  

I n t e r p o l a t i o n  f o r m u l a s  used  a re :  

FI : • f  /•x(Xo) = ( f ( x o  + h) - f ( x o ) ) / h  
Fz:  c~ f /Ox(xo) = ( f ( x o  + h) - f ( x o  - h))/2h 
F3: ~ f /~x(xo)  = ( f  (xo + 2h) - 2 f ( x 0 )  + f (x o - 2h))/2h , 

w h e r e  h is an  a d j u s t a b l e  p a r a m e t e r .  F o r  a j u d i c i o u s  cho ice  of  h (h = 0.001 for 

r ad ia l  var iab les ,  h = 1 ~ for  a n g u l a r  va r iab les )  f o r m u l a  F2 p r o v i d e s  g o o d  resul ts  

(Tab le  3). 

5.3. Potent ia l  Integrals  

T h e  c o o r d i n a t e  t r a n s f o r m a t i o n  is tha t  d e s c r i b e d  in P a r t  4. W i t h  a ve ry  l imi ted  

n u m b e r  o f  po in ts ,  it is poss ib l e  to  o b t a i n  a r e a s o n a b l e  accuracy .  A l t h o u g h  the  

c o n d i t i o n s  of  K p e r i o d i z a t i o n  a re  n o t  c o m p l e t e l y  fulfi l led (see P a r t  4), an  inc rease  

o f  p e r i o d i z a t i o n  up  to  e = 3,4 i m p r o v e s  se r ious ly  the  accuracy .  

5.4. Bielectronic Integrals  

W e  h a v e  first s t ud i ed  the  c o n v e r g e n c e  wi th  respec t  to i n t e g r a t i o n  on  e l ec t ron  l ,  
i.e. J ')~a(1)Zb(1)V(1)dv 1, where  V is c a l c u l a t e d  ana ly t ica l ly .  T h e  c o n v e r g e n c e  is 

s imi la r  to t ha t  o b s e r v e d  for  o v e r l a p  in tegra l s  ( s o m e w h a t  s lower ,  T a b l e  5). 
Second ly ,  for  the  s a m e  t y p e  o f  i n t eg ra l s  we h a v e  i nves t i ga t ed  the  in f luence  of  the  
n u m e r i c a l  i n t e g r a t i o n  o f  V on  the  f inal  p rec i s ion .  W e  h a v e  used, for n u m e r i c a l  
i n t e g r a t i o n  on  e l ec t ron  1, the  best  resul t  o f  T a b l e  5. Resu l t s  in T a b l e  6 ind ica t e  
t ha t  a careful  i n t e g r a t i o n  o f  p o t e n t i a l  does  n o t  g rea t ly  in f luence  the  f inal  prec is ion .  
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Table  5. Absolu te  errors  (in uni ts  10 5 a.u.) for b ie lec t ronic  integrals  S 7~(1) )~b(1) V(1)dv~ where V(1), 
po ten t ia l  created by a monocen t r i c  d i s t r ibu t ion  (ls,  Is) ( ~ ( l s ) =  1.268) is eva lua ted  analyt ical ly .  The 
upper  tables  co r respond  to a monocen t r i c  d i s t r ibu t ion  (ls,(1), ls,(1)) the lower  tables  cor respond  to 
a b icent r ic  d i s t r ibu t ion  (1 s,(1), lsb(1)). Exact  values  are 0.01289257 a.u. (upper  tables) and  0.34320456 a.u. 

( lower tables) 
' x  N 
~ , ~  1 2 3 4 ~ 1 2 3 4 

N N 

N1 = 101 N 1 = 199 

1 53 323 546 605 1 3 0.02 3 35 
2 - 3 - 41 - 59 - 74 2 - 0 . 4  0.08 2 0.1 
3 - 1 0  8 - 21 - 1 7 4  3 0.3 0.09 - 2  5 
4 20 29 - 30 - 173 4 0.09 0.2 0.9 3 

1 4 - 18 - 12 - 23 1 - 2  - 2  - 2  - 3 

2 - 3 - 0.5 3 6 2 - 1  - 0 . 3  - 2  - 5 
3 - 3 10 13 19 3 - 1  - 0 . 9  - 5  - 1 1  
4 - 8 9 - 16 25 4 - 2  - 3  - 9  - 1 7  

Table  6. Absolu te  errors  (in uni ts  10 s a.u.) for the b ie lec t ronic  integrals  defined in Table  5 ~ Za(1) )~b(1) 
�9 V(l)dv~ where  V(1) is ca lcu la ted  numerical ly .  In  al l  cases the in tegra t ion  relat ive to e lectron 1 cor- 
r e spond  to the best  resul t  in Table  5 (N 1 = 199, c~tl = a , l  = 2) and  in this  table  are d isp layed abso lu te  
errors  co r re spond ing  to different K pe r iod iza t ion  degrees (c~,~, %~) and  different grids (N2) for the 

numer i ca l  ca lcu la t ion  of V 

~ 3 4 c~2 3 4 5 

N 2 = 101 N 2 = 199 

2 1.0 1.6 3 0.09 0.12 0.16 
3 2.5 1.7 4 0.06 0.24 0.10 

2 +5 .6  - 2 . 4  3 - 1.2 - 3 . 6  - 4 . 5  
3 - 7 . 8  - 1.3 4 +0 .4  - 0 . 7  - 0 . 9  

Table  7. Abso lu te  errors  (in uni ts  10 5 a.u.) for the b ie lec t ronic  in tegral  (lsa(1) 2pb(1)/r[~/lSc(2) lsd(2)). 
The  pe r iod iza t ion  degrees  are l imi ted  to ~tl = ~u, = ~t and  ~t2 = %2 = c~2. Exact  value is 0.0436757 a.u. 

~ 2 ~  ~ el  1 2 3 4 - - ~  1 2 3 4 

N 1 = 101 N z = 101 N1 = 199 N 2 = 199 

1 - 89  - 5 0  - 6 0  - 4 6  1 - 3 5  - 6 - 1 5  - 47 
2 - 6 0  - 5 + 1 2  +11  2 - 4 0  - 0 . 8  - 3 - 1 1  
3 - 3 2  + 2 - 1 3  - 5 6  3 - 7 - 1  - 4 - 1 8  
4 - 4 5  - 2 8  - 2 3  - 4 7  4 - 2 6  - 8  - 1 0  - 3 5  

Finally, we have calculated four center atomic integrals (Table 7). The best choice 
of c~ for integration on electron 1 and electron 2 does not lead systematically to 
the best final result, there are possible cancellations of errors between the two 
successive approximate integrations. 
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Table 8. Absolute errors (in units 10 -5 a.u.) corresponding to different degrees of Z periodization. 
The potential is created by a (ls, Is) distribution [~(ls) = 1.260, d = 1.38 a.u., exact value = 0.66343575 
a.u.]. N is the number of points and cr is the periodization degree defined in formula (2) of Part 3 

x 21 35 78 101 135 199 
\ 

l 8044 666 855 501 255 34 
2 206 103 11 6 5 4 
3 175 45 4 9 1 0.3 
4 98 31 3 0.t 0.3 0.08 

6. Effect of Z Periodization 

Z periodization presents a great advantage over K periodization: an increase 
of Z periodization degree leads to a regular increase of convergence. Some 
specific results reported for integrals where Z periodization was tractable (see 
Part 4 for details) clearly illustrate this fact and the real efficiency of Z periodiza- 
tion. However it requires a lengthy calculation of various derivatives, in general 
by numerical techniques. Nevertheless the additive structure of the transforma- 
tion formula (formula (2) of Part 3) may allow a very crude estimation of deriva- 
tives without a great loss in accuracy. We have compared, in the study of Z 
periodization, optimal grids given by Zaremba [t03 and Korobov [4] and we 
have obtained similar results for a similar number of points (Table 8). 

7. Conclusion 

It appears from this work that the use of periodization techniques leads to 
numerical integration procedures far more efficient than traditional multi- 
dimensional rules (product of unidimensional rules, Monte Carlo method. . . )  and 
would improve methods (Haselgrove [5], Conroy [6] ...) similar to that of 
Korobov. A first periodization technique proposed by Korobov [-4] (K periodiza- 
tion) is simple and unexpensive, but an optimal degree of periodization must be 
empirically determined for each integral type. This seems to be feasible. A second 
periodization technique proposed by Korobov [4] and Zaremba [10] has the 
great advantage of a regular and rapid convergence of the numerical integration. 
In practice it can be expensive and its real usefulness remains to be investigated. 

Appendix 

We shall recall briefly the way for the determination of the integration grids. 
The integration formula is: 

1 i i N 

~ f f (xl ,  x2, x3)dxldx2dx3 = 1IN • g({a~ k/N}, {azk/U}, {aak/N}) 
0 0 0 k = l  

where {x} means fractional part of x and a 1, a2, a 3 are the so called optimal 
coefficients for the integration grid with N points. 
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Table 9. Optimal coefficients for a three dimensional integration corresponding to the definition of 
Zaremba (a2 and a3) and Korobov (a~ and a'3). In both cases at = 1 

N a a a 3 a~ a; 

21 3 8 
26 8 12 
44 14 20 
66 9 23 
78 10 25 
86 30 40 
98 16 44 

101 40 85 
135 29 42 
142 14 37 
185 26 64 
199 30 104 
214 32 78 
30l 36 92 
307 75 99 

Korobov [4] has proposed a systematic way for the determination of the 
optimal coefficients (see [1]) in which there is the following constraint: al = 1, 
a3 = a 2. Zaremba and Maisonneuve [9-11] have shown that the determination 
of optimal coefficients without constraints is feasible for small dimensions 
(3,4 variables). Optimal coefficients according to Korobov and Zaremba for three 
variables are gathered in Table 9. 
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